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Extracting ROI-Based Contourlet Subband
Energy Feature From the sMRI Image for
Alzheimer’s Disease Classification

Jinwang Feng"™, Shao-Wu Zhang™, Luonan Chen
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Abstract—Structural magnetic resonance imaging (sMRI)-based Alzheimer’s disease (AD) classification and its prodromal stage—mild
cognitive impairment (MCI) classification have attracted many attentions and been widely investigated in recent years. Owing to the high
dimensionality, representation of the sMRI image becomes a difficult issue in AD classification. Furthermore, regions of interest (ROI) reflected
in the sMRI image are not characterized properly by spatial analysis techniques, which has been a main cause of weakening the discriminating
ability of the extracted spatial feature. In this study, we propose a ROI-based contourlet subband energy (ROICSE) feature to represent the
sMRIimage in the frequency domain for AD classification. Specifically, a preprocessed sMRI image is first segmented into 90 ROIs by a
constructed brain mask. Instead of extracting features from the 90 ROIs in the spatial domain, the contourlet transform is performed on each of
these ROlIs to obtain their energy subbands. And then for an ROI, a subband energy (SE) feature vector is constructed to capture its energy
distribution and contour information. Afterwards, SE feature vectors of the 90 ROls are concatenated to form a ROICSE feature of the sMRI
image. Finally, support vector machine (SVM) classifier is used to classify 880 subjects from ADNI and OASIS databases. Experimental results
show that the ROICSE approach outperforms six other state-of-the-art methods, demonstrating that energy and contour information of the ROI
are important to capture differences between the sMRI images of AD and HC subjects. Meanwhile, brain regions related to AD can also be
found using the ROICSE feature, indicating that the ROICSE feature can be a promising assistant imaging marker for the AD diagnosis via the
sMRIimage. Code and Sample IDs of this paper can be downloaded at https:/github.com/NWPU-903PR/ROICSE.git.

Index Terms—Alzheimer’s disease, image classification, regions of interest, contourlet transform, subband energy feature

1 INTRODUCTION

WITH the development of medical imaging techniques
and equipments, structural magnetic resonance imag-
ing (SMRI) has become one of main modalities for brain
disease diagnosis in clinics [1], [2], [3]. In recent years,
Alzheimer’s disease (AD) is expected to be a primary cause of
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dementia, which is characterized by cognitive impairment,
behavior disorder, memory loss, and decline of living ability
[4], [5], [6], [7], [8], [9]. In 2006, there were a reported 26.6
million AD cases worldwide, about 56 percent of which
were at the early stage [10]. When the year 2050, the popu-
lation of AD patients is predicted to grow by more than
four-fold to 106.8 million, and one in 85 persons will be
affected by this disease [11]. Therefore, it is becoming an
urgent issue for clinicians to identify AD and mild cogni-
tive impairment (MCI, the prodromal stage of AD) patients
from healthy control (HC) subjects, and subsequently delay
or stop its neurodegenerative progression.

To solve the problem of inaccurately identifying AD
patients, a majority of researchers have put their attention on
how to construct a powerful marker in line with sMRI
images [12], [13], [14], [15], [16], [17], [18], [19], [20]. Accord-
ing to those existing works, AD classification methods can be
roughly divided into three categories: voxel (or vertex)-
based [21], [22], [23], [24], [25], regions of interest (ROI)-
based [26], [27], [28], [29], and patch-based methods [30],
[31], [32]. In the voxel-based method, features are simply
extracted based on statistics or selection of voxels. Ju et al.
proposed to use deep learning with brain network and clini-
cal relevant text information to make early diagnosis of
Alzheimer’s disease [33]. However, the voxel-based features
usually have much higher dimensionality and noisy, which
may not be related to the disease. Thus, the dimensions of
the voxel-based features need be reduced by techniques
such as smoothing [34], downsampling [35] and feature
selection [36] so that the classifiers are more effective and
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efficient. In the ROI-based method, a brain sMRI image is
segmented into different tissue ROIs, and then an ROI-based
feature vector or a vector of the relationships between those
ROIs is used to describe the sMRI image in classifying AD
patients. Ahmed ef al. developed an automatic classification
framework for AD recognition using hippocampal visual fea-
tures [37]. However, spatial features used to represent an ROI
do not capture direction and multiscale information; More-
over, dimensions of the ROI-based features are relatively
high and still need to be further reduced. For the patch-based
method, a tissue patch containing multiple ROIs is selected to
extract spatial features. Li et al. developed a deep learning
method to segment hippocampus from MRI data for predict-
ing MCI subjects” progression to AD dementia in a time-to-
event analysis setting [38]. Meanwhile, Khedher et al. pre-
sented a new CAD system that allows early AD diagnosis
using tissue-segmented brain images [39]. It is clear that
some important information related to AD is ignored by the
patch-based features in describing the sMRI image.

From the perspective of image processing, we prefer to
divide AD classification methods into the spatial domain-
based and the transformation domain-based methods [40],
[41], [42]. The former can easily describe an image by ana-
lyzing its structural patterns in the spatial domain, includ-
ing voxel-based, ROI-based, patch-based, and deep learning
(DL)-based features. For the DL-based method, features are
automatically extracted from structural patterns of the
sMRI image by different network models [6], [9], [43], [44],
[45]. Liu et al. [44] proposed a multi-model DL framework
based on convolutional neural network (CNN) for joint
automatic hippocampal segmentation and AD classification
with structural MRI data. Wang ef al. [45] provided a new
computer-vision based technique to detect AD in an effi-
cient way using eight-layer CNN with leaky rectified linear
unit and max pooling. For the latter, an image is first trans-
formed by the wavelet, contourlet, or shearlet to obtain its
subbands [46]. The subbands are then used to construct
energy features in the frequency domain. Over the past
decade, there have been few existing features extracted by
the transformation domain-based method for AD classifica-
tion. Nowadays, the transformation domain-based method
gradually appears. For example, Zhang et al. utilized sta-
tionary wavelet entropy to extract the texture features of an
MRI for AD classification [47], and Jha et al. proposed a
novel computer-aided diagnosis (CAD) cascade model to
discriminate patients with AD from healthy controls using
the dual-tree complex wavelet transforms [48]. However
the challenge of the transformation domain-based method
is how to make a trade-off between the feature dimensional-
ity and the decomposition scale, as well as how to reason-
ably segment subbands into different energy regions.

In order to alleviate problems of the curse of dimensional-
ity and the segmentation to subband, and extract features
with biological meanings, an ROI-based contourlet subband
energy (ROICSE) feature is proposed to represent the sMRI
image in the frequency domain for AD classification. Specifi-
cally, a preprocessed sMRI image is first segmented into 90
different ROIs by a constructed brain mask that is made
based on the anatomical automated labeling (AAL) atlas [49].
Instead of extracting features from these ROIs in the spatial
domain directly, the contourlet transform is performed on
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each of the 90 ROIs to obtain their subbands, which guaran-
tees that the segmentation to subband is avoided and features
extracted from the subbands have biological meanings. Next,
a subband energy (SE) feature vector is constructed to cap-
ture energy and contour information for representing the
ROIs. Subsequently, SE feature vectors of the 90 different
ROIs are concatenated to form the ROICSE feature for repre-
senting the sMRI image. Finally, the support vector machine
(SVM) classifier is selected to categorize subjects with AD,
MCI and HC based on the ROICSE feature. Experimental
results show that the ROICSE approach outperforms six
other state-of-the-art methods in terms of sensitivity, specific-
ity, and accuracy and so on, demonstrating that energy and
contour information of the ROI are important to capture dif-
ferences between sMRI images of the AD and HC subjects.
Meanwhile brain regions related to AD can also be found
using the ROICSE feature, indicating that the ROICSE feature
can be a promising assistant imaging marker for the AD diag-
nosis via the sMRI image.

Two main contributions have been made in this study.
First, a new method is proposed to construct a low-
dimensional representation of the sMRI image for AD clas-
sification, which can extract the frequency domain-based
feature from different brain regions, guaranteeing that the
extracted features have special biological meanings and can
further find brain regions related to AD. Second, different
from the common approaches performing the contourlet
transform on images directly, the proposed ROICSE method
first partitions the sSMRI image into different ROIs based on
the constructed brain mask in the spatial domain, and then
the contourlet transform is performed on those ROIs to
obtain subbands in the frequency domain. This new strat-
egy can integrate advantages of both the spatial and the fre-
quency domain-based techniques, which make sure that the
ROI can be properly represented using features extracted
from the contourlet subbands.

The rest of this study is organized as follows: In Section 2,
materials and methods are introduced in detail; Metrics and
experimental results are included in Section 3; Discussion is
made in Section 4; Finally, a brief conclusion to this study is
given in Section 5.

2 MATERIALS AND METHODS

In this section, materials and their preprocessing are intro-
duced first, followed by the framework of extracting the
ROICSE feature.

2.1 Materials
Data used in the preparation of this article were obtained from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (adni.loni.usc.edu). The ADNI was launched in 2003
as a public-private partnership, led by Principal Investigator
Michael W. Weiner, MD. The primary goal of ADNI has been
to test whether serial magnetic resonance imaging (MRI), pos-
itron emission tomography (PET), other biological markers,
and clinical and neuropsychological assessment can be
combined to measure the progression of mild cognitive
impairment (MCI) and early Alzheimer’s disease (AD).
Nowadays, the sMRI image has been one of the widely
used modalities in clinically distinguishing AD and MCI
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TABLE 1
Demographic Information of the 880 Selected Subjects

Database Type Gender No. Age MMSE
F/M) (Mn+D) (Mn+£D)
AD 78/122 200 76.85£7.01 22.15+3.17
MCIc  67/53 120 78.65+£9.73 26.38+3.76
ADNI MCInc  71/89 160 73.59+7.68 26.21+2.67
MCI  138/142 280 75.76+8.96 26.28+3.17
HC 84/116 200 76.21+4.97 29.09+1.15
OASIS AD 56/44 100 76.07+7.63 21.18+4.30
HC 63/37 100 60.28+3.79 29.42+0.77

from healthy control (HC) subjects. At the clinical diagnosis
stage, patients with MCI can also be divided into subjects
who will convert into AD after 18 months and subjects who
will remain stable after 18 months. In this study, these two
subcategories are denoted as MClc and MClnc, respectively.
To evaluate classification performance of the ROICSE fea-
ture, 880 sMRI images, including 300 AD, 120 MClIc, 160
MClInc, and 300 HC, are selected from ADNI and OASIS
databases. More detail demographic information about
these selected sMRI images are summarized in Table 1.
MMSE, F, M, Mn, and D in Table 1 are separately abbrevia-
tions of Mini Mental State Examination, Female, Male,
Mean, and Deviation.

For those selected sMRI images, a four-step preprocess-
ing, including motion correction, registration and skull
strap, segmentation, and smoothing, is performed using sta-
tistic parametric mapping (SPMS8) [50] and voxel-based
mapping (VBMS) [51] to remove unrelated tissues and
ensures that a certain brain region of different subjects is at
the same position. After preprocessing steps, the sMRI
image is segmented into 121 x 145 x 121 gray matter (GM),
cerebrospinal fluid (CSF), and white matter (WM) images,
and the voxel volume is 1.5 x 1.5 x 1.5mm?.

At the experimental stage, the GM image that is mostly
related to AD is selected to extract the ROICSE feature, and
five data sets are constructed to perform experiments,
which are described as follows:

1) AD/HC: containing 200 AD and 200 HC subjects

from the ADNI database;

2) AD/MCI: containing 200 AD and 280 MCI subjects
from the ADNI database;

3) MCI/HC: containing 280 MCI and 200 HC subjects
from the ADNI database;

4)  MClIc/MClInc: containing 120 MClIc and 160 MClnc
subjects from the ADNI database.
5)  OASIS: containing 100 AD and 100 HC subjects from
the OASIS database.
Obviously, MCIc/MClnc is a challenging data set whose
subjects are MCI patients.

2.2 Method of Extracting the ROICSE Feature

For those gray matter (GM) images, we use a subject set
{GM;} to represent them, where i € [1,880] is the ith sub-
ject, and ¢ € [1,121] is the tth scan of the ith subject. Before
segmenting the GM image into different brain regions of
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interest (ROI), a mask need be made based on the anatomi-
cal automated labeling (AAL) atlas.

The single ROI mask set of 90 brain regions is first made
using the AAL atlas. This set is denoted as {AAL,;},p =
1,2,...,90,t =1,2,...,91, where p is the pth single ROI
mask, and ¢t is the ¢th scan contained in the pth single ROI
mask. While the size and voxel volume of the single ROI
mask are 91 x 109 x 91 and 2 x 2 x 2mm?, respectively,
which are inconsistent with the size and volume of the pre-
processed GM images. So co-registration must be done
between the single ROI mask and the GM image by SPMS8.
After co-registration, the size and voxel volume of the single
ROI mask become 121 x 145 x 121 and 1.5 x 1.5 x 1.5mm53,
respectively. Therefore, the number of scans contained in the
GM image and the single ROI mask is the same, and thus the
same subscript ¢ is used in sets {GM;} and {AAL,,}. Then a
mask containing 90 brain ROIs and denoted as Mask; can be
constructed, which is formulated by

Mask.(z,y) = p, if AAL, (z,y)=1,p=1,...,90, 1

where (z,y) is a position in the pth single ROI mask. Obvi-
ously,z =1,2,...,121land y = 1,2,...,145.

Based on the constructed brain mask Mask,;, we can seg-
ment the GM images in {GM/}, into different brain ROls.
For a GM image of the ith subject GM’, its pth brain ROI
can be represented by

GMi(x,y), if Mask,(z,y)=p

0, Otherwise @

ROI(z,y) = {
where (z,y) is a position in the ¢th scan contained in Mask;
and GM}, t=1,2,...,121,and p = 1,2,...,90. For simplic-
ity, we use a set denoted as {ROI;} to represent the ROIs of
all GM images, where i is the ith subject, and p is the pth
brain ROI of the ith subject.

Multiscale analysis is an important transform technique
in the field of image processing [5], [13]. Contourlet and cur-
velet are two widely used transform tools, which can con-
quer linear singularity and capture intrinsic geometrical
structures of images perfectly [52], [62], [63]. Compared with
the contourlet, though the curvelet can transform an image
into different scales and directions, more redundant infor-
mation is generated at the detail scales [62]. In contrast, as
shown in Fig. 1, the contourlet transform is a down-sampling
process, which can avoid information redundancy to some
extent. Meanwhile, except the scale and direction parame-
ters, the curvelet has a third parameter-location-needed to be
set. Furthermore, it is obvious that Alzheimer is a disease
with lesions to multiple brain regions, contours of the lesion
regions are different from those of the healthy control, thus
the contour information of different brain ROIs can be used
as one of the markers for identifying the AD patient. Accord-
ing to the above facts, the contourlet transform is more suit-
able to be selected by the ROICSE method.

Given the pth brain ROI of the ith GM image ROIZ'), we
use the contourlet with a S-decomposition-level directional
filter bank at each of the L scales to transform the ROII’;, that
is, the number of directional subbands at each scale is 2.
After the contourlet transform on ROI;}, we can obtain 2°
directional subbands at each of the L scales, hence there are
2% x L directional subbands and a low-frequency subband
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Fig. 1. The contourlet transform with transform scale L=3 and decompo-
sition level S=3.

in total. For brevity and simplicity, a set, denoted as {S'ép’j) b
is used to represent subbands of all brain ROIs of the GM
images in {GM;]}, where j € [1,2% x L+ 1] is the jth sub-
band of the pth brain ROI of the ith GM image.

For the subband set {Sl }, it is clear that the number of
subbands is determined by L an S whose optimal values
will be estimated by experiments in this study. For the 25 x
L + 1 subbands of each brain ROI, the low-frequency sub-
band is arranged at the first position in the subband set, and
the remaining 2° x L positions of the subband set are used
to arrange the directional subbands. For example, 5'2371) rep-
resents the low-frequency subband of the third brain ROI of
the second GM image in {GM]}.

Given a low-frequency subband and 2° x L directional
subbands of the pth brain ROI of the ith GM image we can

obtain a low-frequency subband energy feature ¢, ; , which
is represented by
LTSNS () o
w0 = MO x NO ’

where M0 and NO are the sizes of the low-frequency sub-
band, and S 1y (@,y) is a coefficient in the low-frequency sub-
band, and the directional subband energy feature ¢{, ;) is
represented by

29%L+1 =M1 N1 | qi
i _Z‘/zz Dy y=1 |Sép,j)(m7y)|

_ 4
€ 95 x L x M1 x N1 : @

where M1 and N1 are the sizes of the directional subbands,
and Sfp_’ i (z,y) is a coefficient in those directional subbands.

According to Equations (3) and (4), the pth brain ROI of
the ith GM image can be represented by a subband energy
(SE) feature vector denoted as

SE, = [€{y0), lp))- ()
By concatenating the SE feature vectors SE;, where p =
1,2,...,90, we can obtain the final ROI-based contourlet sub-
band energy (ROICSE) feature of the ith GM image, which is
represented by
ROICSE' = [SE}, SE;, ..., SEy). (6)
For all sMRI images selected from the ADNI and OASIS
databases in this study, a feature set, denoted as { ROICSE'},
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where i =1,2,...,880, is used to describe them. Obviously
the dimension of the ROICSE feature is 90 x 2 = 180, which is
reduced to a large extent compared with the dimension of the
GM image. In the subsequent section, the ROICSE features
are used as imaging markers of the sMRI image for AD classi-
fication and its association analysis.

2.3 Support Vector Machine Classifier

AD classification and association analysis are realized by the
ROICSE feature using support vector machine (SVM) classi-
fier. In this study, the SVM classifier is provided by MAT-
LAB software, and we select the radial basis function (RBF)
as the kernel of the SVM classifier, which is formulated as

-1 — 1 2
1 £2|>‘ o

k(z1,22) = exp <— 552
It is obvious that for the SVM classifier with the RBF kernel,
two important parameters, the window width of the RBF
kernel o and the penalty coefficient of the SVM classifier C,
need to be estimated based on experiments. o is used to con-
trol the number of support vectors: with an increase in o, the
number of support vectors decreases, and vice versa. Mean-
while, C'is used to control the penalty degree to error, with
the increase of C, it easily causes over-fitting, and vice versa.
Therefore, parameters o and C, need to be estimated based
on experiments carefully.

2.4 Metrics

In order to evaluate the classification performance of the
ROICSE approach, we will perform ten experiments with
ten-fold cross validation on those data sets. For the ten-fold
cross validation experiment, subjects contained in a data set
are randomly divided into ten subsets, one is used for test-
ing, and the rest is used for training the SVM classifier. The
mean classification accuracy (ACC), sensitivity (Se), speci-
ficity (Sp), precision-recall and receiver operating character-
istic (ROC) curves, and Matthews correlation coefficient
(MCCQ) of the ten experiments on each of those data sets are
used as the final result, which are formulated as follows:

1 TP; + TN;

A —
ce = OZTP+FP +TN; + FN;’ ®
TP,
= 10 “~ TP, + FN;’ ©
1 71N,
— T 1
=102 FP + TN, 1o
W TP x TN; — FP; x FN;
(11)

MCC =
ce = 102 VTPN; ’

where TP, is the number of correctly classified positive sub-
jects, F'P; is the number of incorrectly classified nagative sub-
jects, TN; is the number of correctly classified negative
subjects, FN; is the number of incorrectly classified positive
subjects, TPN; = (TP; + FP;)(TP, + FN;)(TN; + FP;)(TN; +
FN;), and the subscript i is the ith experiment on a data set.
Meanwhile, precision predictive value (PPV), F1 score (F1),

Authorized licensed use limited to: University of Southern California. Downloaded on June 19,2022 at 17:16:30 UTC from IEEE Xplore. Restrictions apply.



FENG ET AL.: A ROICSE-BASED METHOD FOR AD CLASSIFICATION

1631

€'(1,0)

\ 4

Subband

Segmenting

€'1,1)

SE feature

€0

\ 4

GM image

\ 4

SE}, SEiy,

€'n
ROICSE feature

JYISSBID TAAS

AT
&

SE feature

€'90,0)

\ 4

Suband

ei(eo,n

SE feature

Fig. 2. The framework of extracting the ROICSE feature from the gray matter (GM) image for AD classification.

false positive rate (FPR) are also listed in Table S1 to S5, which
can be found in the supplementary materials, which can be
found on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TCBB.2021.3051177.

In summary, for a given sMRI image, after preprocess-
ing, we can directly obtain the GM image. Then the GM
image is segmented into 90 different brain ROIs by a con-
structed brain mask. The contourlet transform is performed
on each of the 90 ROIs to obtain their subbands, and then a
SE feature vector is constructed to describe each of these
ROIs. Subsequently, the SE feature vectors of the 90 ROIs
are concatenated to form the ROICSE feature for being a
marker of the sMRI image. Finally, the ROICSE features are
used as input for the SVM classifier to classify subjects with
AD, MCI, and HC. For the sake of visualization, Fig. 2
shows the completed framework of the ROICSE approach
for AD classification.

3 EXPERIMENTS

In this section, we will conduct multiple experiments on
AD/HC, AD/MCI, MCI/HC, MClc/MClInc, and OASIS
data sets using the ROICSE feature. Parameter selection for
the ROICSE-based approach is first introduced, followed by
comparison experiments on the ADNI and OASIS databases.

3.1 Parameter Selection
In the proposed approach, four parameters, the contourlet
transform scale L, the decomposition level of the directional
filter bands S, the window width of the RBF kernel o, and
the penalty coefficient of the SVM classifier C, are estimated
by experiments on the ADNI database.

To estimate parameters of the contourlet transform L and
S, we set C' =1 and o = 1 when experiments are conducted
on AD/HC, AD/MCI, MCI/HC, and MCIc/MClInc data
sets. ACC’s of experiments with different L and S values on
the four data sets are shown in Fig. 3. It is clear from Figs. 3a
and 3b that with the increase of L, ACC’s of experiments on

the four data sets decrease rapidly, and with the increase of
S, ACC’s are increasing at first, and then decreasing after
S > 3. Obviously, the ROICSE approach can get the best
results overall when L = 1 and S = 3. Additionally, it can be
also seen from Fig. 1 that with the increase of L, contours of
different brain regions are destroyed but more detail infor-
mation is contained in the subbands. Considering that
Alzheimer’s is a disease along with atrophies of multiple
brain regions and the ROICSE feature is constructed with the
contour and energy distribution information of different
ROlIs, therefore, we set L =1 and S = 3 as the optimal esti-
mation values of the contourlet transform.

To obtain the optimal estimation of the window width of
the RBF kernel o, we set the penalty coefficient of the SVM
classifier C = 1,and use L = 1 and S = 3 in estimation experi-
ments of the window width of the RBF kernel 0. ACC’s of
experiments with different window widths of the RBF kernel
o are given in Fig. 4. As is shown in Fig. 4, ACC’s on the four
data sets AD/HC, AD/MCI, MCI/HC, and MClc/MClnc
increase rapidly when o < 0.8, ACC'’s increase slowly when
0.8 < o < 1.0, however ACC’s on the four data sets decrease
quickly when o > 1.0. With the fact of Fig. 4 shown, we set
o = 0.9 (ie., the mean value of 0 = 0.8 and o = 1.0) as the
optimal estimation of the window width of the RBF kernel.

88 90
—0— ADHC
86 ADIMCI S
—&—MCIHC / ~
84 e MCIcMCinc 851 Y ~s
/

82 © }// bt
— .80 - 1
.- g e /

I3 157 / -
3 S g .
78 —— < g/ & O -
75 ~_]
76 gl ¢
74 70 —6— ADIHC
ADMCI
72 O MCIHC
MCIc/MCinc
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1 2 3 4 1 2 3 4 5

Contourlet transform Scale, L Decomposition level of directional filter banks, S

(a) (b)

Fig. 3. ACC’s of experiments with different L and S values on the ADNI
database withC =1ando = 1.
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TABLE 2
ACCs of the ROICSE Approach Using SVM With RBF,
Polynomial, and Linear Kernels on ADNI and OASIS
Databases When L =1, 5 =3,0 =0.9,and C = 15

Databases  Data sets RBF  Polynomial Linear
AD/HC 93.57 91.07 89.43

ADNI AD/MCI 82.73 80.59 78.36
MCI/HC 83.13 81.00 79.02
MCIc/MCInc  77.29 75.12 73.21

OASIS AD/HC 82.55 80.17 75.69

Fig. 4. ACC’s of experiments with different window widths of the RBF
kernel o on the ADNI database when the penalty coefficient of the SVM
classifierC =1, L=1,and S = 3.

The penalty coefficient of the SVM classifier C' is esti-
mated on AD/HC, AD/MCI, MCI/HC, and MCIc/MClInc
data sets when L =1, § =3, and o = 0.9. ACC’s of experi-
ments with different penalty coefficients of the SVM classifier
C on the four data sets are shown in Fig. 5. It can be clearly
seen from Fig. 5 that ACC’s on the four data sets increase dra-
matically when C' < 15, and ACC’s on the four data sets
gradually become stable after C' > 15. Therefore we set C' =
15 as the optimal estimation value of the penalty coefficient
of the SVM classifier based on the fact of Fig. 5 shown.

Finally, ACCs of the ROICSE approach using SVM with
RBF on the ADNI and OASIS databases are shown in Table 2
when L =1, 5 =3,0=0.9, and C = 15. Meanwhile, ACCs
of the ROICSE approach using SVM with Polynomial and
Linear kernels are also listed in Table 2. It is obvious from
Table 2 that ACCs of the ROICSE approach using SVM with
RBF are better than those of SVM with Polynomial and Lin-
ear on the two databases. That is why the SVM classifier
with RBF is selected in the ROICSE approach.

3.2 Comparisons

In the following, we will compare the ROICSE approach
with six other state-of-the-art methods on ADNI and OASIS
databases under the same settings when parameters of the
ROICSE approach, L=1, S=3, 0 =0.9, and C = 15, fol-
lowed by comparisons with published results of machine
learning-based algorithms.

3.2.1 Comparisons on the ADNI Database
On the AD/HC data set, we evaluate the classification per-

formance of the ROICSE approach in identifying AD
patients from HC subjects. ACC’s, Se’s, Sp’s, and MCC'’s of
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Fig. 5. ACC’s of experiments with different penalty coefficients of the
SVM classifier C' on the ADNI database when L = 1, S = 3,and o = 0.9.

the six comparison methods and the ROICSE approach are
listed in Table 3. According to ACC’s shown in Table 3,
ACC of the ROICSE approach is marginally higher than
those of the six state-of-the-art methods, has reached to
93.57 percent, and is 0.65 percent higher than that of the
best comparison method. Additionally, Se, Sp, and MCC of
the ROICSE approach consistently outperform those of
the six state-of-the-art methods and are 95.83 percent,
91.87 percent, and 0.85, respectively. Experimental results
on the AD/HC data set demonstrate that differences
between sMRI images of the AD and HC subjects can be
captured by contourlet subbands, and also testify the ratio-
nality of doing the contourlet transform on brain ROIs.

To perform an extensive comparison with the six state-of-
the-art methods, experiments on the AD/MCI data set are
conducted, and ACC’s, Se’s, Sp’s, and MCC'’s of the six state-
of-the-art methods and the ROICSE approach are given in
Table 4. It is clear from Table 4 that ACC of the ROICSE
approach is 82.73 percent, which is a little higher than the
best comparison method’s 82.59 percent. Moreover, Se, Sp,
and MCC of the ROICSE approach consistently outperform
those of the six state-of-the-art methods, which are
84.65 percent, 80.80 percent, and 0.66, respectively. Experi-
mental results on the AD/MCI data set also indicate that the
transformation domain-based tool can be used to analyze the
MRI image, and contour and multiscale information con-
tained in the subband are captured by the ROICSE feature.

To make a further evaluation, experiments are done on the
MCI/HC data set. ACC’s, Se’s, Sp’s, and MCC'’s of the six
state-of-the-art methods and the ROICSE approach are listed
in Table 5. It can be observed from Table 5 that ACC of the
ROICSE approach is 83.13 percent, this result is still margin-
ally higher than the best comparison method’s 83.09 percent.
However, Se, Sp, and MCC of the ROICSE approach are
87.79 percent, 76.60 percent, and 0.65, respectively, which are

TABLE 3
Results of the Six Comparison Methods and the ROICSE
Approach on AD/HC Data Set

Method ACC(%) Se(%) Sp(%) MCC
HippoV [37] 85.70 77.61 91.28 0.71
Hippo [38] 87.51 87.60 87.42 0.76
TSB [39] 89.96 92.35 86.94 0.79
AUTO [33] 92.92 94.00 89.85 0.85
DTCW [48] 90.16 90.22 90.15 0.80
SWE [47] 92.70 93.67 91.77 0.85
ROICSE 93.57 95.83 91.87 0.85
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TABLE 4
Results of the Six Comparison Methods and the ROICSE
Approach on AD/MCI Data Set
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TABLE 6
Results of the Six Comparison Methods and the ROICSE
Approach on MClc/MClnc Data Set

Method ACC(%) Se(%) Sp(%) MCC  Method ACC(%) Se(%) Sp(%) MCC
HippoV [37] 71.51 75.94 71.23 0.43 HippoV [37] 68.72 67.38 70.69 0.37
Hippo [38] 79.35 79.44 79.26 0.60 Hippo [38] 69.38 69.47 69.29 0.42
TSB [39] 81.53 83.75 80.07 0.63 TSB [39] 70.11 68.61 74.16 0.41
AUTO [33] 82.59 84.26 80.11 0.65 AUTO [33] 72.32 72.21 73.06 0.46
DTCW [48] 78.48 75.35 79.98 0.57 DTCW [48] 69.21 70.74 67.45 0.39
SWE [47] 80.49 76.21 80.65 0.61 SWE [47] 72.86 69.55 75.49 0.49
ROICSE 82.73 84.65 80.80 0.66 ROICSE 77.29 80.36 74.20 0.61
TABLE 5 ; ROC on AD/HC data set ROC 4 ROC on AD/MCI data set ROC
Results of the Six Comparison Methods and the ROICSE 5 j‘@r » //
Approach on MCI/HC Data Set 8 3
o 0.6 g 0.6

Method ACC(%) Se(%) Sp(%) McCC 2., 2.,
HippoV [37] 76.29 72.30 81.53 0.49 £ 02 o
Hippo [38] 77.25 95.79 53.23 0.53 :
TSB [39] 82.41 84.12 80.48 0.63 % 02 o4 06 08 1—tie |0 02 04 06 08 1
AUTO [33] 83.09 83.46 82.31 0.65 False Positive Rate Iﬁio False Positive Rate
DTCW [48] 81.94 75.79 84.18 0.61 | ROC on MCI/HC data setROC b ROC on MCIc/MCln data set ROC
SWE [47] 80.67 76.79 86.98 0.57 ROIGSE
ROICSE 83.13 87.79 76.60 0.65 o8

not more than 95.79 percent, 86.98 percent, and 0.65 of the best
comparison methods. Based on Tables 4 and 5, we can find
that the ROICSE approach marginally outperforms the com-
parison methods. The reason for this is that subjects with MCI
are anisotropic in their sMRI images, and MClc subjects have
more AD-like pathological patterns and in contrast, MCInc
subjects have more HC-like pathological patterns.

For MClc/MClnc, it is a more challenging data set for the
ROICSE approach in classifying MClc from MCInc patients,
due to the fact that only tiny differences can be found between
their sMRI images. We still give ACC’s, Se’s, Sp’s, and MCC’s
of the six state-of-the-art methods and the ROICSE approach,
which are shown in Table 6. It is obvious from Table 6 that
ACC of the ROICSE approach is 77.29 percent, which is
443 percent higher than the best comparison method’s
72.86 percent. In addition, Se and MCC of the ROICSE
approach consistently outperforms those of the six state-of-
the-art methods, and reaches 80.36 percent and 0.61. Con-
versely, Sp of the ROICSE approach is lower than that of the
best comparison method. According to experimental results
listed in Table 6, we can prove that patients who will convert
to AD are different from those who will remain stable in their
subband energy distributions. This is why the ROICSE
approach obviously outperforms the six state-of-the-art meth-
ods on the MClc/MClnc data set.

It is obvious from Tables 3, 4, 5, and 6 that the ROICSE
feature can be relatively accuracy to describe the sMRI
images of subjects with AD, MCI and HC. There are three
reasons: First, a constructed mask is used to segment the
GM image into different ROIs; Second, the contourlet trans-
form is performed on the ROIs to obtain subbands of the
ROI; Third, the ROICSE feature is constructed with coun-
tour and energy distribution information of the ROI.

Meanwhile, in order to verify accurate representation to
the sMRI image by the ROICSE feature, ROC curves of the
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Fig. 6. ROC curves of comparison methods and the ROICSE approach
on AD/HC, AD/MCI, MCI/HC, and MCIc/MClinc data sets.
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Fig. 7. Precision-recall curves of comparison methods and ROICSE on
AD/HC, AD/MCI, MCI/HC, and MClc/MClnc data sets.

comparison methods and the ROICSE approach are shown in
Fig. 6. It can be seen from Fig. 6 that ROC curves of the
ROICSE approach consistently outperform those of the six
comparison methods on AD/HC, AD/MCI, MCI/HC, and
MClIc/MClInc data sets, which are closer to the upper left of
the axes. Additionally, precision-recall curves of the ROICSE
approach on AD/HC, AD/MCI, MCI/HC, and MClc/MClInc
data sets are also given to evaluate the performance of the
ROCCSE feature extracting model. As Fig. 7 shown, preci-
sion-recall curves of the ROICSE approach also consistently
outperform those of the six comparison methods, which
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TABLE 7
Comparisons of Our Results With Published Results of Machine Learning-Based Methods on AD/HC and MCI/HC Data Sets

Method Subjects AD/HC (%) MCI/HC (%)

ACC Se Sp ACC Se Sp
DMTFS [60] 51AD+99MCI+52NC 87.30 88.40 86.20 68.20 76.90 51.10
LBFE [61] 51AD+99MCI+52NC 83.10 80.50 85.10 73.60 75.30 69.70
MKMFA [7] 192AD+397MCI+229NC 88.60 85.70 90.40 71.90 79.00 60.70
DLASAE [9] 65AD+169MCI+77NC 87.80 88.60 87.20 76.92 74.29 78.13
VGGNet [6] 97 AD+233MCI+119NC 84.70 77.30 90.80 70.90 81.90 65.20
DenseNet [44] 97 AD+233MCI+119NC 88.90 86.60 90.80 76.20 79.50 69.80
ROICSE 200AD+280MCI+200NC 93.57 95.83 91.87 83.13 87.79 76.60

are closer to the upper right of the axes. Experimental results
on the ADNI database prove that the ROICSE approach out-
perform the six comparison methods in terms of classification
and ROC and precision-recall curves.

Inrecent years, machine learning-based systems, especially
the deep learning (DL)-based ones, have achieved significant
performance for AD classification. Hence, we also consider
quantitatively comparing results of the ROICSE approach
with some recent learning-based methods published on AD/
HC and MCI/HC data sets, including the conventional learn-
ing-based methods(DMTEFS [60], LBFE [61], MKMFA [7]) and
the DL-based methods(DLASAE [9], VGGNet [6], DenseNet
[44]). Results and experimental settings obtained from their
original papers are directly listed in Table 7 because the
experiments are performed under different conditions. It is
obvious from Table 7 that the ROICSE approach can more
accurately identify AD patients from HC individuals than
those DL-based methods. One reason is that for the DL-based
methods, the input layer contains more than ten thousand
nodes because of the high dimensionality of the sMRI image,
causing a huge number of parameters to DL framework, but
samples can be used to train network architecture are small.
So, the DL-based features cannot accurately represent the
sMRI image. Furthermore, the sMRI image contains a lot of
redundant information such as the black background; there-
fore the useful information may not be dominant in the
extracted feature, which is another reason that makes the DL-
based feature with relatively low discrimination.

3.2.2 Comparisons on the OASIS Database

For wvalidating generalization ability of the ROICSE
approach, experiments on OASIS data set are conducted to
compare the ROICSE approach with the six state-of-the-art
methods when parameters of the ROICSE approach, L =1,

TABLE 8
Results of the Six Comparison Methods and the ROICSE
Approach With L =1, S=3,0=0.9, and C =15
on OASIS Data Set

Method ACC(%) Se(%) Sp(%) ~ MCC
HippoV [37] 76.40 7827 7453 0.37
Hippo [38] 78.60 80.40 76.80 0.38
TSB [39] 79.55 81.70 77.40 0.42
AUTO [33] 81.27 83.04 79.50 0.62
DTCW [48] 80.74 82.99 78.49 0.60
SWE [47] 81.15 83.15 79.15 0.62
ROICSE 82.55 84.80 80.30 0.64

S =3,0=009, and C =15. ACC’s, Se’s, Sp’s, and MCC'’s
are listed in Table 8. It is can be seen from Table 8 that ACC,
Se, Sp, and MCC of the ROICSE approach consistently out-
perform those of the six comparison methods, which are
82.55 percent, 84.80 percent, 80.30 percent, and 0.64, respec-
tively. Experimental results on the OASIS database further
demonstrate that energy distribution and contour informa-
tion of the ROI can be used as features for representing the
sMRI image, and the ROICSE feature can be regarded as a
promising imaging marker for identifying AD patients.
Comprehensive experimental results demonstrate that the
ROICSE approach outperforms the six state-of-the-art methods
and may be an useful assistance in the clinical AD diagnosis via
sMRI images. Furthermore, results of the ROICSE approach
indicates that the transformation domain-based tool can be
introduced to analyze sMRI images for AD classification. Finally
we also give the mean running time (MRT, in seconds) of the
ROICSE method on MClIc/MClInc data set in identifying 160
subjects. The program runs on Matlab R2017a and computer
with Intel(R) Core(TM) i7-4700 3.40 GHz CPU 64bit system.
MRT of extracting the ROICSE feature from the GM image is
1.4431s, MRT of classifying a subject using the ROICSE feature
is 0.0028s, and MRT of the proposed method categorises a sub-
ject is 1.4459s. Obviously, the ROICSE feature extraction is time-
consuming in the ROICSE method, but it can be accepted to
identify a subject using the ROICSE feature within two seconds.

4 DISCUSSION

AD has been a common cause of dementia in recent years,
mainly destroying brain neurons of patients [53], [54], [55]. In
this section, we will find those brain ROIs related to AD by mul-
tiple experiments. In the ROICSE approach, different brain
ROIs are represented by contourlet sbubband energy features,
which are used to construct the ROICSE feature, and therefore
we can tell which brain ROI plays an important role in AD clas-
sification by exclusion. Due to the fact that the human brain is
symmetric and a tissue region is represented by two brain ROls
located in different hemisphere [56], [57], so a brain can be
essentially represented by 45 tissue regions. Names of the 45
ROIs are listed in Table S6 put in the supplementary materials,
available online. In the following, experiments to find ROI
related to AD from the 45 brain ROIs are conducted on AD/
HC, AD/MCI, MCI/HC, and MClc/MClnc data sets, and the
ROICSE feature is used as a reference, which means that a brain
ROI makes the positive contribution to ACC in AD classifica-
tion when ACC of the ROICSE feature with the ROl removed is
lower than the reference, and vice versa.
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Fig. 9. ACC’s of the ROICSE feature with one ROI removed and the reference on AD/MCI data set. The serial numbers from 1 to 45 in x-axial are the
removed brain ROls, and the serial number 46 in x-axial represents the reference.

To research the problem of which brain ROIs play a dom-
inant role in classifying AD patients from HC subjects,
experiments with one ROI removed from the ROICSE fea-
ture are performed on the AD/HC data set. ACC’s of the
ROICSE feature with one ROI removed and the reference
on the AD/HC data set are shown in Fig. 8. It is clear from
Fig. 8 that not all the brain ROIs are important in AD and
HC classification. Most of the 45 brain ROIs make positive
contributions to improving the ACC, some of the 45 brain
ROIs make negative contributions to the ACC, three of the
45 brain ROIs do no-contributions to ACC, and ACC of the
ROICSE feature-based approach changes from 92.97 to
93.83 percent on the AD/HC data set. The first ten positive
brain ROIs includes 7 (inferior frontal gyrus triangular), 8
(inferior frontal gyrus orbital), 12 (superior frontal medial),
15 (Insula), 22 (calcarine fissure surrounding cortex), 28
(fusiform gyrus), 34 (precuneus), 35 (paracentral lobule), 38
(Ienticular nucleus pallidum), and 43 (middle temporal
gyrus). Brain ROIs such as 13 (superior frontal gyrus medial
orbital), 16 (anterior cingulate paracingulate gyri), 25 (supe-
rior occipital gyrus), 31 (inferior parietal gyri), and 39 (thala-
mus) all make negative contributions to ACC in AD and
HC classification. In addition, three brain ROIs do no-
contributions to the ACC, which are 24 (lingual gyrus), 27

(inferior occipital gyrus), and 29 (postcentral gyrus). Those
results show that multiple brain regions have been affected
by this disease, and indicate that feature selection is needed
in extracting energy information from the brain ROIs.

For the AD/MCI data set, experiments with one brain ROI
removed from the ROICSE feature are also performed to
research the problem of which brain ROI plays a dominant
role in classifying AD from MCI patients. ACC’s of the
ROICSE feature with one ROI removed and the reference are
given in Fig. 9. We can tell from Fig. 9 that not all brain ROIs
are important in AD and MCI classification, most of the 45
brain ROIs make negative contributions to ACC, the number
of brain ROIs doing positive contributions to ACC is less than
half of the total, and the ACC interval of the ROICSE approach
is 81.80-84.00 percent on the AD/MCI data set. Specifically, 3
(superior frontal gyrus orbital), 5 (middle frontal gyrus
orbital), 6 (inferior frontal gyrus opercular), 8 (inferior frontal
gyrus orbital), 17 (median cingulate paracingulate gyri), 18
(posterior cingulate gyrus), 28 (fusiform gyrus), 40 (heschl
gyrus), 41 (superior temporal gyrus), and 43 (middle temporal
gyrus) are the first ten brain ROIs which make more positive
contributions to ACC. The no-contribution brain ROI is null,
which means that the 45 brain ROIs are divided into two clas-
ses. According to the number of brain ROIs making negative
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contributions, it demonstrates that most of the 45 brain ROIs
between AD and MCI patients have the same degree of lesion.

For the MCI/HC data set, experiments with one brain ROI
removed from the ROICSE feature are also performed to find
brain ROIs related to AD in classifying MCI patients from
HC subjects. ACC’s of the ROICSE feature with one ROI
removed and the reference are shown in Fig. 10. In contrast
to Fig. 9, it can be seen from Fig. 10 that still not all brain
ROIs are important in MCI and HC classification, but most
of the 45 brain ROIs make positive contributions to ACC,
and ACC of the ROICSE approach changes from 81.71 to
83.15 percent. The first ten positive brain ROlIs are 1 (precen-
tral gyrus), 6 (inferior frontal gyrus opercular), 10 (supple-
mentary motor area), 17 (median cingulate paracingulate
gyri), 19 (hippocampus), 22 (calcarine fissure surrounding
cortex), 23 (cuneus), 32 (supramarginal gyrus), 35 (paracen-
tral lobule), and 43 (middle temporal gyrus), respectively.
However, only 29 (postcentral gyrus) and 31 (inferior parie-
tal gyri) contributes to ACC negatively and 12 (superior fron-
tal medial) does no-contributions to ACC. As it describes,
MCI, the prodromal stage of AD, has caused lesions of multi-
ple brain regions which make a large difference between
sMRI images of MCI and HC subjects. Whereas, contours of
brain ROIs between MCI and HC subjects have small

changes, but detail information contained in the ROIs is
largely different, so ACC of the ROICSE approach is very lit-
tle affected by those negative brain ROIs.

For the MClc/MClInc data set, experiments with one
brain ROI removed from the ROICSE feature are also per-
formed to find brain ROISs related to AD in classifying MClc
and MClnc patients, and ACC’s of the ROICSE feature with
one ROI removed and the reference are shown in Fig. 11. It
is observed from Fig. 11 that again not all brain ROIs are
important in MClc and MClnc classification, the 45 brain
ROIs are relatively and evenly classified into the positive-
contribution and the negative-contribution classes, and the
ACC interval of the ROICSE feature based approach is
76.03-78.76 percent. Clearly, the first ten positive brain ROIs
are 6 (inferior frontal gyrus opercular), 9 (rolandic opercu-
lum), 10 (supplementary motor area), 13 (superior frontal
gyrus medial orbital), 19 (hippocampus), 29 (postcentral
gyrus), 30 (superior parietal gyrus), 36 (caudate nucleus), 37
(lenticular nucleus putamen), and 39 (thalamus), respec-
tively. For the negative-contribution brain ROIs, 2 (superior
frontal gyrus), 15 (insula), and 42 (temporal pole superior
temporal) are remarkably significant to improve ACC, in
other words, these three brain ROIs are almost no difference
between sMRI images of MClc and MClnc subjects.
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Fig. 12. First ten positive brain ROls in classifying subjects with AD, MCI
and HC on four data sets. The first row is on AD/HC data set, the second
row is on AD/MCI data set, the third row is on MCI/HC data set, and the
last row is on MClc/MClnc data set.

According to the four leave-one-ROI-out experiments,
we can find that different brain ROIs play different roles in
classifying subjects with AD, MCI, and HC [58]. For some
brain regions such as 6 (inferior frontal gyrus opercular), 28
(fusiform gyrus), and 29 (postcentral gyrus), they make pos-
itive contributions to ACC in AD classification. However,
other brain regions, such as 19 (hippocampus) and 43 (mid-
dle temporal gyrus), make positive contributions to ACC in
AD and MCI classification, in contrast, they make negative
contributions to ACC in MClc and MClnc classification [59].
Therefore, the selection to brain ROIs must be done before
extracting energy features from their directional subbands,
so that a more powerful imaging marker can be constructed
to identify subjects with AD, MCI, and HC. For clarity and
visualization, Fig. 12 illustrates the coronal, sagittal and
axial views of the first ten positive-contribution brain ROIs
that are important tissues related to AD in classification.

5 CONCLUSION

In this study, we propose an approach to perform AD classi-
fication by extracting the regions of interest (ROI)-based
contourlet subband energy (ROICSE) feature. Specifically,
the sMRI image, after preprocessing, is first divided into 90
different ROIs by a constructed brain mask. Instead of
extracting features from the brain ROIs in the spatial
domain, the contourlet transform is performed on these
ROIs to obtain their subbands, and then subband energy
feature vectors of different brain ROIs are concatenated to
form the ROICSE feature for representing the sMRI image.
Finally, results of SVM-based AD classification on six data
sets show that the ROICSE approach outperforms six other
state-of-the-art methods. However, experiments to find
brain ROIs related to AD indicate that not all brain ROIs are
important for classifying subjects with AD, MCI, and HC.
Thus, feature selection is needed to construct a powerful
imaging marker. In our future work, we will model associa-
tions between different brain regions in frequency domain
so that those brain ROIs mostly related to AD can be
selected for AD classification.
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